English 中文 日本語 한국어 Русский

Capturing Motion,
Crafting Stories

Explore Our Case Studies: Transforming Motion into Masterpieces Across Industries

Optical motion capture for geometric position correction of cone beam CT platform

Client
Zhejiang University Institute of Translational Medicine
Capture volume
Application
Motion capture, cone CT platform, error correction
Objects
Cone CT platform
Equipment used

Since the first commercial CT came out in 1970s, CT technology has developed rapidly because of its great contribution to human health and great economic benefits in the field of industrial nondestructive testing. Nowadays, CT occupies an indispensable position in the field of clinical examination departments in hospitals, scientific research departments in universities and nondestructive testing in factories. Cone-beam CT has become a research hotspot in the field of CT due to the strong development of flat panel detectors.

Cone-beam CT system, called CBCT for short, is a typical three-dimensional imaging system. By emitting low-energy cone-beam rays, the rays and sensors can rotate around the patient or test object synchronously for one or less weeks, and the scanning process usually takes only ten seconds to tens of seconds. Cone beam CT has many advantages, such as high spatial resolution, high ray utilization rate, fast reconstruction speed, simple system and so on. It can be reconstructed by a variety of algorithms, among which FDK algorithm is widely used in practice because of its simple mathematical form, high computational efficiency and good reconstruction effect under the condition of small cone angle.

CT image of teeth under motion capture

However, the FDK reconstruction algorithm has extremely high requirements for the system, which needs to meet three strict geometric alignment relationships:

1) the focus, rotation center and detector center of the radiation source are in a straight line;

2) The connecting line of the above three points is perpendicular to the plane of the detector;

3) The projection of the rotating shaft on the detector should coincide with the central column of the detector.

Therefore, accurate positioning of geometric parameters of cone-beam CT system is particularly important to improve the quality of reconstructed images.

In view of this key problem, Professor Niu Tianye's team from the School of Translational Medicine, Zhejiang University has effectively carried out animal experiments by using the cone beam CT system of small animals based on rotating gantry.

Optical motion capture for geometric position correction of cone beam CT platform

In this experiment, it is very important to correct the geometric position of cone-beam CT platform. Cone-beam CT system is mainly composed of ray source, workpiece turntable and area array detector, and the system geometric parameter error mainly comes from the installation deviation of these three parts. Because of the requirement of high precision for positioning correction, they chose NOKOV 3D optical motion capture system as the positioning tool.

The experimental team assigned the spatial coordinate origin and coordinate system to a specific position and direction on the CT platform, and arranged Markers on the X-ray source, workpiece turntable and area array detector of the CT platform to obtain coordinate data in real time, and corrected the cone beam CT platform by proofreading the data of the measured position.


Prev
Research & development of Biomechatronics Robots
Next
Applications of motion capture systems in wire-driven continuum robot research

Applications of motion capture systems in wire-driven continuum robot research

Sichuan University
2022-06-17

Applications of Motion Capture Systems for Robot Joint Displacement and Geometric Parameter Calibration

School of Aerospace Engineering and Applied Mechanics,Tongji University
2022-06-18

Applications of motion capture for snake movement analysis and snake robot development

Changchun University of Science and Technology
2022-06-22

Applications of motion capture in medial patellofemoral ligament repair techniques

Shenzhen Second People‘s Hospital
2022-08-05

By using this site, you agree to our terms, which outline our use of cookies. CLOSE ×

Contact us
We are committed to responding promptly and will connect with you through our local distributors for further assistance.
Engineering Virtual Reality Movement Sciences Entertainment
I would like to receive a quote
Beijing NOKOV Science & Technology Co., Ltd (Headquarter)
Room820, China Minmetals Tower, Chaoyang Dist., Beijing
info@nokov.cn
+ 86-10-64922321
Capture Volume*
Objective*
Full Bodies Drones/Robots Others
Quantity
Camera Type
Pluto1.3C Mars1.3H Mars2H Mars4H Underwater Others/I do not know
Camera Count
4 6 8 12 16 20 24 Others/I don't know