English 中文 日本語 한국어 Русский
NOKOV Showcases Banner

Capturing Motion,
Crafting Stories

Explore Our Case Studies: Transforming Motion into Masterpieces Across Industries

Trajectory planning and verification of rope traction rehabilitation robot using motion capture system

Client
Xidian University
Capture volume
Application
Motion capture, rope traction rehabilitation robot, upper limb motion trajectory measurement, multi-bar mechanism optimi
Objects
Human upper limb, rope traction rehabilitation robot, multi-bar mechanism
Equipment used
8 NOKOV Mars 2H motion capture cameras

In recent years, the number of patients with dyskinesia caused by diseases and accidents is increasing, and people's demand for rehabilitation medicine is also increasing, and rehabilitation robots have developed rapidly. Combining robot technology with rehabilitation therapy, the limbs are driven to repeat movement by mechanical structure, so as to stimulate and reconstruct the motor nervous system, which can help the limbs recover their motor function.

Rope-driven robot is a rehabilitation robot which uses ropes instead of rigid bars as driving elements. Its structure is simple, its inertia is small, its mechanism is relatively light, its movement speed is fast, its load ratio is high, it can be modularized and reconfigurable, and its manufacturing and maintenance costs are low, which has attracted wide attention at home and abroad in recent years.

Using motion capture to collect motion data of a rope-driven robot

The rope traction robot developed by Duan Qingjuan, Associate Professor of School of Mechanical and Electrical Engineering, Xidian University, uses two-bar system to simulate upper and lower arms, and three-bar system to simulate upper and lower arms to add hands. During the experiment, it is necessary to plan the multi-bar motion trajectory according to the forward swing angle range of upper limbs when people walk naturally. The team uses NOKOV optical three-dimensional motion capture system to measure parameters such as the forward swing angle and length of upper limbs when people walk. The shoulder joint, elbow joint, wrist joint and hand end of the experimenter were pasted with markers, and walked naturally on the treadmill. Trajectory can be planned after the upper limb data in natural state is obtained. The multi-bar system takes the vertical to the ground as the initial position. Firstly, the multi-bar stops at the highest position in front of the body, that is, the maximum angle, through the law of acceleration, then constant speed and finally deceleration, and then returns to the initial position with the same law. 30s is a cycle, which simulates the state of the upper arm during movement.

Using motion capture to collect the motion data of the rope-driven robot in detail

In addition to planning the multi-bar trajectory, the experimental team also optimized the configuration of the multi-bar mechanism, using Monte Carlo method to optimize the motor position and rotation distance, and maximizing the feasible workspace of force rotation while ensuring that the planned trajectory is within the feasible workspace of force rotation. Using the optimized configuration, two-bar mechanism and three-bar mechanism are built for experiments. The actual trajectory is measured by NOKOV optical three-dimensional motion capture system, and the rope tension is measured by sensor. Compared with the calculated trajectory and tension theoretical values, the correctness of the optimization method is verified.

Prev
Research & development of Biomechatronics Robots
Next
Applications of motion capture systems in wire-driven continuum robot research

NOKOV Motion Capture Basketball Game Demo

UMI Game
2022-03-29

Kung Fu Motion Capture Performance

Shu-Gu Entertainment
2023-02-06

Applications of motion capture systems in wire-driven continuum robot research

Sichuan University
2022-06-17

Applied Energy | Dynamic Behavior and Energy Flow of Floating Triboelectric Nanogenerators

Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences
2024-12-12

By using this site, you agree to our terms, which outline our use of cookies. CLOSE ×

Contact us
We are committed to responding promptly and will connect with you through our local distributors for further assistance.
Engineering Virtual Reality Movement Sciences Entertainment
I would like to receive a quote
Beijing NOKOV Science & Technology Co., Ltd (Headquarter)
LocationRoom820, China Minmetals Tower, Chaoyang Dist., Beijing
Emailinfo@nokov.cn
Phone+ 86-10-64922321
Capture Volume*
Objective*
Full Bodies Drones/Robots Others
Quantity
Camera Type
Pluto1.3C Mars1.3H Mars2H Mars4H Underwater Others/I do not know
Camera Count
4 6 8 12 16 20 24 Others/I don't know