English 中文 日本語 한국어 Русский

Capturing Motion,
Crafting Stories

Explore Our Case Studies: Transforming Motion into Masterpieces Across Industries

Research on Cooperative Control of Industrial Robots

Client
School of Automation, Southeast University
Capture volume
Application
Dual Arm Robot, Industrial Robot, Trajectory Planning
Objects
Estun ER16 Robot
Equipment used

Most of the current industrial welding is done by industrial robots. In the field of arc welding, the traditional welding workstation composed of welding robots, positioners, and fixtures can no longer meet the current needs for small batches and customized flexible automated production. The collaborative welding system composed of multiple robots has stronger operation capacity, wider working space, more flexible system structure and organization, which can overcome the shortcomings of traditional welding workstations.

For a typical multi-robot welding system with two handling robots and one welding robot, controlling the cooperative motion of the two handling robots is the key to achieve high-quality welding. The problems to be solved include: the trajectory planning of the two-robot cooperation, the modeling of the two-robot cooperation system, and the position/force coordination control of the two-robot cooperation.

the working state of the industrial robots

Researchers from the School of Automation of Southeast University have carried out research on the subject of peer-to-peer cooperative control of two robots. The object-oriented trajectory planning is used in the research, and a simulation platform is built for verification. At the same time, mathematical modeling is carried out for the dual robots, the end mapping relationship is determined, and the position-based impedance control is used to adjust the position/force relationship in the cooperative process of the dual robots.

the motion capture camera captures the motion trajectory of the industrial robots when they cooperative work

In order to test the effectiveness of the verification system, the researchers took two Estun ER16 robots as control objects, and completed the splicing motion of the two-robot cooperative clamping of steel pipes. For the planning of the motion trajectory of the dual-robot cooperative system, it is first necessary to determine the relative pose of the base coordinate system of the dual-robot. In the experiment, a customized workpiece for calibration was installed at the ends of the two robots, and 3 markers were installed on each calibration workpiece. And the distance from the marker on the center of the circle to the center of the other two markers is 100mm. The NOKOV optical three-dimensional motion capture system is used to locate the markers on the two sets of workpieces, so that the pose of the workpiece at the end of the robot can be determined, and then the relative position and posture of the two robots can be measured.

the robotic arm is pasted with motion capture markers

The positioning accuracy of the NOKOV optical motion capture system reaches sub-millimeter level, and it can accurately obtain real-time 6DoF of the target, ensuring the smooth progress of scientific research projects.

Bibliography:

     [1]Research on peer-to-peer cooperative control of dual robots based on impedance model[D]. CHEN Ming. Southeast University, 2018.

Prev
Research & development of Biomechatronics Robots
Next
Applications of motion capture systems in wire-driven continuum robot research

Applications of motion capture systems in wire-driven continuum robot research

Sichuan University
2022-06-17

Applications of Motion Capture Systems for Robot Joint Displacement and Geometric Parameter Calibration

School of Aerospace Engineering and Applied Mechanics,Tongji University
2022-06-18

Applications of motion capture for snake movement analysis and snake robot development

Changchun University of Science and Technology
2022-06-22

Suzhou Broadcasting System: Digital human Su Yi performs

2024-08-12

By using this site, you agree to our terms, which outline our use of cookies. CLOSE ×

Contact us
We are committed to responding promptly and will connect with you through our local distributors for further assistance.
Engineering Virtual Reality Movement Sciences Entertainment
I would like to receive a quote
Beijing NOKOV Science & Technology Co., Ltd (Headquarter)
Room820, China Minmetals Tower, Chaoyang Dist., Beijing
info@nokov.cn
+ 86-10-64922321
Capture Volume*
Objective*
Full Bodies Drones/Robots Others
Quantity
Camera Type
Pluto1.3C Mars1.3H Mars2H Mars4H Underwater Others/I do not know
Camera Count
4 6 8 12 16 20 24 Others/I don't know